题目内容
在过正方体AC1的8个顶点中的3个顶点的平面中,能与三条棱CD 、A1D1、 BB1所成的角均相等的平面共有( )
A.1 个 B.4 个 C.8 个 D.12个
C
解析试题分析:根据平行,三条棱CD 、A1D1、 BB1可平移到正方体的顶点,如BC 、BA、 BB1,,此时三条棱CD 、A1D1、 BB1与平面AB1C所成的角均相等,正方体有8个顶点,所以有8个平面满足条件.
考点:线面角
练习册系列答案
相关题目
已知是三条不同的直线,是两个不同的平面,下列命题为真命题的是( )
A.若,,,,则 |
B.若,∥,,则 |
C.若∥,,则∥ |
D.若,,,则∥ |
已知三条不重合的直线和两个不重合的平面,下列命题正确的是( )
A.若,,则 |
B.若,,且,则 |
C.若,,则 |
D.若,,且,则 |
教室内有一把直尺,无论怎样放置,地面上总有这样的直线与该直尺所在直线 ( ).
A.平行 | B.异面 | C.垂直 | D.相交但不垂直 |
如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( )
A.EH∥FG |
B.四边形EFGH是矩形 |
C.Ω是棱柱 |
D.Ω是棱台 |
[2013·湖南娄底5月]平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是( )
A.AB∥CD | B.AD∥CB |
C.AB与CD相交 | D.A,B,C,D四点共面 |
已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )
A.AB∥m | B.AC⊥m |
C.AB∥β | D.AC⊥β |
已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l?α,l?β,则( )
A.α∥β且l∥α |
B.α⊥β且l⊥β |
C.α与β相交,且交线垂直于l |
D.α与β相交,且交线平行于l |