题目内容

关于x的不等式|x-2|+|x-a|≥2a在R上恒成立,则实数a的最大值为
 
分析:根据已知不等式在R上恒成立,利用|x-m|+|x-n|≥|n-m|放缩已知不等式的左边,然后分a-2大于等于0和小于等于0两种情况,化简绝对值得到关于a的不等式,分别求出解集,再求出两解集的并集即可得到a的最大值.
解答:解:化简得:|x-2|+|x-a|≥|(x-2)-(x-a)|=|a-2|≥2a,
当a-2≥0,即a≥2时,上式化为a-2≥2a,解得a≤-2,所以实数a无解;
当a-2≤0,即a≤2时,上式化为2-a≥2a,解得3a≤2,解得a≤
2
3

综上,实数a的范围为a≤
2
3

则实数a的最大值为
2
3

故答案为:
2
3
点评:此题考查了绝对值不等式的解法,考查了分类讨论的数学思想,是一道中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网