ÌâÄ¿ÄÚÈÝ
Ñо¿ÎÊÌ⣺¡°ÒÑÖª¹ØÓÚxµÄ²»µÈʽax2-bx+c£¾0£¬½â¼¯Îª£¨1£¬2£©£¬½â¹ØÓÚxµÄ²»µÈʽcx2-bx+a£¾0¡±ÓÐÈçϽⷨ£º
½â£ºÓÉcx2-bx+a£¾0ÇÒx¡Ù0£¬ËùÒÔ
£¾0µÃa£¨
£©2-
+c£¾0£¬Éè
=y£¬µÃay2-by+c£¾0£¬ÓÉÒÑÖªµÃ£º1£¼y£¼2£¬¼´1£¼
£¼2£¬¡à
£¼x£¼1ËùÒÔ²»µÈʽcx2-bx+a£¾0µÄ½â¼¯ÊÇ£¨
£¬1£©£®
²Î¿¼ÉÏÊö½â·¨£¬½â¾öÈçÏÂÎÊÌ⣺ÒÑÖª¹ØÓÚxµÄ²»µÈʽ
+
£¼0µÄ½â¼¯ÊÇ£º£¨-3£¬-1£©¡È£¨2£¬4£©£¬Ôò²»µÈʽ
+
£¼0µÄ½â¼¯ÊÇ
½â£ºÓÉcx2-bx+a£¾0ÇÒx¡Ù0£¬ËùÒÔ
(c¡Á2-bx+a) |
x2 |
1 |
x |
b |
x |
1 |
x |
1 |
x |
1 |
2 |
1 |
2 |
²Î¿¼ÉÏÊö½â·¨£¬½â¾öÈçÏÂÎÊÌ⣺ÒÑÖª¹ØÓÚxµÄ²»µÈʽ
b |
(x+a) |
(x+c) |
(x+d) |
bx |
(ax-1) |
(cx-1) |
(dx-1) |
(-
£¬-
)¡È(
£¬1)
1 |
2 |
1 |
4 |
1 |
3 |
(-
£¬-
)¡È(
£¬1)
£®1 |
2 |
1 |
4 |
1 |
3 |
·ÖÎö£ºÓɸø³öµÄ²»µÈʽ¿ÉÖªx¡Ù0£¬·Ö×Ó·Öĸͬʱ³ýÒÔxºó»»Ôª£¬¼´y=-
£¬ÔòÓÉÒÑÖª²»µÈʽµÄ½â¼¯µÃµ½ÁËyµÄ·¶Î§£¬½øÒ»²½Çó½â·Öʽ²»µÈʽµÃµ½xµÄ·¶Î§£®
1 |
x |
½â´ð£º½â£ºÓÉ
+
£¼0ÇÒx¡Ù0£¬µÃ
+
£¼0£¬
Áîy=-
£¬Ôò
+
£¼0£¬
¡ày¡Ê£¨-3£¬-1£©¡È£¨2£¬4£©£¬¼´-
¡Ê£¨-3£¬-1£©¡È£¨2£¬4£©£¬
ÓÉ-3£¼-
£¼-1£¬½âµÃ
£¼x£¼1£»
ÓÉ2£¼-
£¼4£¬½âµÃ-
£¼x£¼-
£®
¡à²»µÈʽ
+
£¼0µÄ½â¼¯ÊÇ(-
£¬-
)¡È(
£¬1)£®
¹Ê´ð°¸Îª£º(-
£¬-
)¡È(
£¬1)£®
bx |
(ax-1) |
(cx-1) |
(dx-1) |
b | ||
a-
|
c-
| ||
d-
|
Áîy=-
1 |
x |
b |
y+a |
y+c |
y+d |
¡ày¡Ê£¨-3£¬-1£©¡È£¨2£¬4£©£¬¼´-
1 |
x |
ÓÉ-3£¼-
1 |
x |
1 |
3 |
ÓÉ2£¼-
1 |
x |
1 |
2 |
1 |
4 |
¡à²»µÈʽ
bx |
(ax-1) |
(cx-1) |
(dx-1) |
1 |
2 |
1 |
4 |
1 |
3 |
¹Ê´ð°¸Îª£º(-
1 |
2 |
1 |
4 |
1 |
3 |
µãÆÀ£º±¾Ì⿼²éÁËÀà±ÈÍÆÀí£¬¿¼²éÁË·Öʽ²»µÈʽµÄ½â·¨£¬½â´ðµÄ¹Ø¼üÊÇÃ÷È·²»µÈʽ
+
£¼0µÄ·Ö×Ó·Öĸͬʱ³ýÒÔxºóÔ²»µÈʽ²»µÈºÅ²»±ä£¬ÊÇ»ù´¡Ì⣮
bx |
(ax-1) |
(cx-1) |
(dx-1) |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿