题目内容
已知函数,满足:①对任意,都有;②对任意n∈N *都有. (Ⅰ)试证明:为上的单调增函数;(Ⅱ)求;(Ⅲ)令,试证明:
解析
(16分), ( a>1,且)(1) 求m 值 , (2) 求g(x)的定义域;(3) 若g(x)在上恒正,求a的取值范围。
(12分)已知△ABC是边长为2的正三角形,如图,P,Q依次是AB,AC边上的点,且线段PQ将△ABC分成面积相等的两部分,设AP=x,AQ=t,PQ=y,求:(1)t关于x的函数关系式;(2)y关于x的函数关系式;(3)y的最小值和最大值。
设函数对任意,都有,且> 0时,< 0,. (1)求; (2)求证:是奇函数;(3)请写出一个符合条件的函数;(4)证明在R上是减函数,并求当时,的最大值和最小值
(本小题满分14分)已知函数,(x>0).(1)当0<a<b,且f(a)=f(b)时,求的值 ; (2)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,求出a,b的值,若不存在,请说明理由.(3)若存在实数a,b(a<b),使得函数y=f(x)的定义域为 [a,b]时,值域为 [ma,mb],(m≠0),求m的取值范围.
某小区要建一座八边形的休闲小区,它的主体造型的平面图是由二个相同的矩形和构成的面积为的十字型地域,计划在正方形上建一座“观景花坛”,造价为元/,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为元/,再在四个空角(如等)上铺草坪,造价为元/.(1)设总造价为元,长为,试建立与的函数关系;(2)当为何值时,最小?并求这个最小值。
(本小题14分)设函数,其中.(I)当时,判断函数在定义域上的单调性;(II)求函数的极值点;(III)证明对任意的正整数,不等式都成立.
若 ,,则的大小关系为( )
设函数= + 1。(Ⅰ)画出函数y=的图像:(Ⅱ)若不等式≤ax的解集非空,求n的取值范围