题目内容
某厂生产A产品的年固定成本为250万元,若A产品的年产量为万件,则需另投入成本(万元)。已知A产品年产量不超过80万件时,;A产品年产量大于80万件时,。因设备限制,A产品年产量不超过200万件。现已知A产品的售价为50元/件,且年内生产的A产品能全部销售完。设该厂生产A产品的年利润为L(万元)。
(1)写出L关于的函数解析式;
(2)当年产量为多少时,该厂生产A产品所获的利润最大?
(1),
(2)当年产量为60万件时,该厂所获利润最大。
解析试题分析:(1)利润L(x)等于销售收入减去固定成本再减去投入成本C(x),根据产量的范围列出分段函数解析式;
(2)当0<x≤80时,利用配方法求二次函数的最值,当80<x≤200时,利用基本不等式求最值.
试题解析:(1)由题意知
(2)①当时,,所以
当时,;
②当时,
。
当且仅当,即时,“=”成立。
因为,所以。
答:当年产量为60万件时,该厂所获利润最大。
考点:函数模型的选择及应用;分段函数的值域的求法;利用配方法求二次函数的最值;利用基本不等式求最值.
练习册系列答案
相关题目
某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如表:
时间(将第x天记为x)x | 1 | 10 | 11 | 18 |
单价(元/件)P | 9 | 0 | 1 | 8 |
(1)写出每天销售收入y(元)与时间x(天)的函数关系式y=f(x).
(2)在这20天中哪一天销售收入最高?为使每天销售收入最高,按此次测试结果应将单价P定为多少元为好?(结果精确到1元)