题目内容
【题目】为了更好地贯彻党的“五育并举”的教育方针,某市要对全市中小学生“体能达标”情况进行了解,决定通过随机抽样选择几个样本校对学生进行体能达标测试,并规定测试成绩低于60分为不合格,否则为合格,若样本校学生不合格人数不超过其总人数的5%,则该样本校体能达标为合格.已知某样本校共有1000名学生,现从中随机抽取40名学生参加体能达标测试,首先将这40名学生随机分为甲、乙两组,其中甲乙两组学生人数的比为3:2,测试后,两组各自的成绩统计如下:甲组的平均成绩为70,方差为16,乙组的平均成绩为80,方差为36.
(1)估计该样本校学生体能测试的平均成绩;
(2)求该样本校40名学生测试成绩的标准差s;
(3)假设该样本校体能达标测试成绩服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,利用估计值估计该样本校学生体能达标测试是否合格?
(注:1.本题所有数据的最后结果都精确到整数;2若随机变量z服从正态分布,则,,)
【答案】(1)74;(2).(3)可估计该样本校学生“体能达标”测试合格.
【解析】
(1)由甲乙两组学生人数可求得总均分;
(2)设第一组学生的测试成绩分别为,第二组学生的测试成绩分别为,由已知方差求得和,结合(1)可得总方差;
(3)由已知数据知,然后求出不合格的概率得不合格人数,从而得结论.
解:(1)由题知,甲、乙两组学生数分别为24和16,
则这40名学生测试成绩的平均分
故可估计该样本校学生体能测试的平均成绩为74,.
(2)由变形得
设第一组学生的测试成绩分别为,
第二组学生的测试成绩分别为,
则第一组的方差为
,
解得.
第二组的方差为
解得.
这40名学生的方差为
,
所以.
综上,标准差.
(3)由,,得的估计值为,的估计值
由,
得,
即
所以.
从而,在全校1000名学生中,“不合格”的有(人)
而,
故可估计该样本校学生“体能达标”测试合格.
【题目】近几年,电商行业的蓬勃发展带动了快递业的迅速增长,快递公司揽收价格一般是采用“首重+续重”的计价方式.首重是指最低的计费重量,续重是指超过首重部分的计费重量,不满一公斤按一公斤计费.某快递网点将快件的揽收价格定为首重(不超过一公斤)8元,续重2元/公斤(例如,若一个快件的重量是0.6公斤,按8元计费;若一个快件的重量是1.4公斤,按元元元计费).根据历史数据,得到该网点揽收快件重量的频率分布直方图如下图所示
(1)根据样本估计总体的思想,将频率视作概率,求该网点揽收快件的平均价格;
(2)为了获得更大的利润,该网点对“一天中收发一件快递的平均成本(单位:元)与当天揽收的快递件数(单位:百件)之间的关系”进行调查研究,得到相关数据如下表:
每天揽收快递件数(百件) | 2 | 3 | 4 | 5 | 8 |
每件快递的平均成本(元) | 5.6 | 4.8 | 4.4 | 4.3 | 4.1 |
根据以上数据,技术人员分别根据甲、乙两种不同的回归模型,得到两个回归方程:
方程甲:,方程乙:.
①为了评价两种模型的拟合效果,根据上表数据和相应回归方程,将以下表格填写完整(结果保留一位小数),分别计算模型甲与模型乙的残差平方和,,并依此判断哪个模型的拟合效果更好(备注:称为相应于点的残差,残差平方和;
每天揽收快递件数/百件 | 2 | 3 | 4 | 5 | 8 | |
每天快递的平均成本/元 | 5.6 | 4.8 | 4.4 | 4.3 | 4.1 | |
模型甲 | 预报值 | 5.2 | 5.0 | 4.8 | ||
残差 | 0.2 | 0.4 | ||||
模型乙 | 预报值 | 5.5 | 4.8 | 4.5 | ||
预报值 | 0 | 0.1 |
②预计该网点今年6月25日(端午节)一天可以揽收1000件快递,试根据①中确定的拟合效果较好的回归模型估计该网点当天的总利润(总利润=(平均价格-平均成本)×总件数).
【题目】为了解高新产业园引进的甲公司前期的经营状况,市场研究人员对该公司2019年下半年连续六个月的利润进行了统计,统计数据列表如下:
月份 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 |
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
月利润(万元) | 110 | 130 | 160 | 150 | 200 | 210 |
(1)请用相关系数说明月利润y(单位:万元)与月份代码x之间的关系的强弱(结果保留两位小数),求y关于x的线性回归方程,并预测该公司2020年1月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,己知生产新型材料的乙企业对A、B两种型号各100件新型材料进行模拟测试,统计两种新型材料使用寿命频数如下表所示:
使用寿命 材料类型 | 1个月 | 2个月 | 3个月 | 4个月 | 总计 |
A | 15 | 40 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
现有采购成本分别为10万元/件和12万元/件的A、B两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,不同类型的新型材料损坏的时间各不相同,经甲公司测算,平均每件新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每件新型材料的使用寿命都是整数月,且以频率估计每件新型材料使用寿命的概率,如果你是甲公司的负责人,以每件新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?
参考公式:相关系数;
回归直线方程为,其中,.
参考数据:,,,.