题目内容
设函数
,其中a为正实数.
(l)若x=0是函数
的极值点,讨论函数
的单调性;
(2)若
在
上无最小值,且
在
上是单调增函数,求a的取值范
围;并由此判断曲线
与曲线
在
交点个数.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302608915.png)
(l)若x=0是函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302608444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302624447.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302624447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302655510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302608444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302655510.png)
围;并由此判断曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302608444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302702704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302655510.png)
(1)增区间为
,减区间为
;(2)
;0.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302655510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302749433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302749363.png)
试题分析:(1)先求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302764690.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302780367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302796491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302811570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302811337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302920703.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302936686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302952495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302952495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302952495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302998543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303014753.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303030437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302952495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302998543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303061370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302952495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302998543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302796491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302998543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303139778.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302998543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303170391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303186282.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303201802.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303217635.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303232800.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303248513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302998543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303279754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303186282.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302998543.png)
试题解析:(1) 由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303326646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303342339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302624447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303373536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303388630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302624447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302655510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302749433.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303451882.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303466446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302624447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303498509.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303498677.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303513373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302624447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303498509.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302608444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303498509.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303139778.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303498509.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303170391.png)
综上所述
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303186282.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302749363.png)
此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303201802.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253036691580.png)
则 h(x)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303685482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303700607.png)
极小值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025303279754.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容