题目内容
【题目】公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3,14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为( ) 参考数据: ,sin15°≈0.2588,sin7.5°≈0.1305.
A.12
B.24
C.48
D.96
【答案】B
【解析】解:模拟执行程序,可得: n=6,S=3sin60°= ,
不满足条件S≥3.10,n=12,S=6×sin30°=3,
不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,
满足条件S≥3.10,退出循环,输出n的值为24.
故选:B.
列出循环过程中S与n的数值,满足判断框的条件即可结束循环.
【题目】某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量 | 2 | 3 | 4 |
频数 | 20 | 50 | 30 |
(1)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(2)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.
【题目】某研究小组在电脑上进行人工降雨模拟试验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟试验的统计数据
(I)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.