题目内容

已知正三棱柱ABC—A1B1C1中,A1B⊥CB1,则A1B与AC1所成的角为(   )

A.450 B.600  C.900 D.1200 

C.

解析试题分析:分别取AB,A­1B1的中点M,N,连接B1M,AN,CM,C1N,因为此三棱柱为正三棱柱,所以又因为A1B⊥CB1,根据三垂线定理可知,
因为四边形为平行四边形,所以AN//B1M,所以再由三垂线定理的逆定理可知,所以A1B与AC1所成的角为900.
考点:三垂线定理及逆定理.
点评:解本小题关键是在平面A1ABB1内作出B1C,AC1的射影,然后再利用三垂线定理或逆定理进行证明即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网