题目内容
【题目】某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
【答案】解:设为该儿童分别预订x个单位的午餐和y个单位的晚餐,
设费用为F,则F=2.5x+4y,
由题意知约束条件为:
画出可行域如图:
变换目标函数:
当目标函数过点A,即直线6x+6y=42与6x+10y=54的交点(4,3)时,F取得最小值.
即要满足营养要求,并且花费最少,应当为儿童分别预订4个单位的午餐和3个单位的晚餐.
【解析】利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用.本题主要考查找出约束条件与目标函数,准确地描画可行域,再利用图形直线求得满足题设的最优解.
练习册系列答案
相关题目