题目内容
【题目】已知函数f(x)=2sin(ωx+φ)+1()的最小正周期为π,且.
(1)求ω和φ的值;
(2)函数f(x)的图象纵坐标不变的情况下向右平移个单位,得到函数g(x)的图象,
①求函数g(x)的单调增区间;
②求函数g(x)在的最大值.
【答案】(1) ; (2)① 增区间为;②最大值为3.
【解析】
(1)直接利用函数的周期和函数的值求出函数的关系式.
(2)利用函数的平移变换求出函数g(x)的关系式,进一步求出函数的单调区间.
(3)利用函数的定义域求出函数的值域.
(1)的最小正周期为,所以 ,即=2,
又因为,则,所以.
(2)由(1)可知,则,
① 由得,
函数增区间为.
② 因为,所以.
当,即时,函数取得最大值,最大值为.
【题目】某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为5元,销售单价与日均销售量的关系如图所示.
销售单价/元 | … | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | … |
日均销售量/桶 | … | 480 | 460 | 440 | 420 | 400 | 380 | … |
请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?
【题目】在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.
x(个) | 2 | 3 | 4 | 5 | 6 |
y(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)在年收入之和为2.5(百万元)和3(百万元)两区中抽取两分店调查,求这两分店来自同一区的概率
(2)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(3)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y-0.05x2-1.4,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店,才能使A区平均每个分店的年利润最大?
参考公式: