题目内容

13.在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图象只有一个交点,则a的值为$-\frac{1}{2}$.

分析 由已知直线y=2a与函数y=|x-a|-1的图象特点分析一个交点时,两个图象的位置,确定a.

解答 解:由已知直线y=2a是平行于x轴的直线,由于y=x-a为一次函数,其绝对值的函数为对称图形,故函数y=|x-a|-1的图象是折线,所以直线y=2a过折线顶点时满足题意,
所以2a=-1,解得a=-$\frac{1}{2}$;
故答案为:$-\frac{1}{2}$.

点评 本题考查了函数的图象;考查利用数形结合求参数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网