题目内容
【题目】如图甲所示的平面五边形中,,,,,,现将图甲所示中的沿边折起,使平面平面得如图乙所示的四棱锥.在如图乙所示中
(1)求证:平面;
(2)求二面角的大小;
(3)在棱上是否存在点使得与平面所成的角的正弦值为?并说明理由.
【答案】(1)证明见解析;(2);(3)存在,理由见解析.
【解析】
(1)推导出AB⊥AD,AB⊥平面PAD,AB⊥PD,PD⊥PA,由此能证明PD⊥平面PAB;
(2)取AD的中点O,连结OP, OC,由知OC⊥OA,以为坐标原点,OC所在的直线为x轴,OA所在的直线为y轴建立空间直角坐标系,利用向量法能求出二面角A-PB-C的大小;
(3)假设点M存在,其坐标为(x, y, z),BM与平面PBC所成的角为,则存在λ∈(0, 1),有,利用向量法能求出在棱PA上满足题意的点M存在.
(1)∵,,,
∴,
∴,
∵平面平面,平面平面,
∴平面,
又∵平面,
∴,
又∵,,
∴平面.
(2)取的中点,连结,,
由平面平面知平面,
由知,
以为坐标原点,所在的直线为轴,所在的直线为轴建立空间直角坐标系
如图所示,
则易得,,,,,
设平面的法向量为,
由,得,
令得,,
∴,
设二面角大小为,
则,
∵,
∴二面角的大小.
(3)假设点存在,其坐标为,与平面所成的角为,
则存在,有,
即,,
则,
从而化简得,
解得
∵,
∴
∴在棱上满足题意的点存在.
【题目】为了判断英语词汇量与阅读水平是否相互独立,某语言培训机构随机抽取了100位英语学习者进行调查,经过计算的观测值为7,根据这一数据分析,下列说法正确的是( )
附:
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
A.有99%以上的把握认为英语词汇量与阅读水平无关
B.有99.5%以上的把握认为英语词汇量与阅读水平有关
C.有99.9%以上的把握认为英语词汇量与阅读水平有关
D.在犯错误的概率不超过1%的前提下,可以认为英语词汇量与阅读水平有关