题目内容

已知函数f(x)=
1+2x
1-2x
+log2
1+x
1-x
  (1)判别函数的奇偶性,说明理由;(2)解不等式f(x)-
1+2x
1-2x
≤2
分析:(1)先由真数大于0,解不等式得出函数的定义域,再由奇函数的定义只要判断f(x)和f(-x)的关系即可,也可计算f(x)+f(-x)=0进行判断.
(2)由不等式f(x)-
1+2x
1-2x
≤2
,即 log2
1+x
1-x
≤2
.最后利用对数的单调性转化为分式不等式求解即得.
解答:解:(1)定义域
1-2x≠0
1+x
1-x
>0
(2分),
x∈(-1,0)∪(0,1)(1分)(直接写出得3分)
f(-x)=
1+2-x
1-2-x
+log2
1-x
1+x
=
2x+1
2x-1
-log2
1+x
1-x
=-f(x)
(2分)
所以f(x)是奇函数(1分)
(2)log2
1+x
1-x
≤2
,(1分)
0<
1+x
1-x
≤4
,(1分)
x≤
3
5
或x>1(2分)
最后不等式的解集是(-1,0)∪(0,
3
5
]
(2分)
点评:本题考查复合函数的定义域、单调性、奇偶性的判断和证明,难度不大,解题时要注意解对数函数的不等式时,不要忘记其真数为正数这个前提条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网