题目内容

对定义在区间l,上的函数f(x),若存在开区间(a,b)I和常数C,使得对任意的x∈(a,b)都有-C<f(x)<C,且对任意的x(a,b)都有|f(x)|=C恒成立,则称函数f(x)为区间I上的“Z型”函数.

(Ⅰ)求证:函数f(x)=|x-3|-|x-1|是R上的“Z型”函数;

(Ⅱ)设f(x)是(I)中的“Z型”函数,若不等式|t|=|t+1|≥f(x)对任意的x∈R恒成立,求实数t的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网