题目内容
【题目】已知函数f(x)的定义域I=(﹣∞,0)∪(0,+∞),在(0,+∞)上为增函数,且x1,x2∈I,恒有f(x1x2)=f(x1)+f(x2).
(1)求证:f(x)是偶函数:
(2)若f(m)﹣f(2m+1)<3m2+4m+1,求实数m的取值范围.
【答案】(1)证明见解析
(2)
【解析】
(1)利用偶函数的定义直接证明;(2)通过对函数的自变量的取值的任意性,利用赋值法借助于奇偶性,单调性得到关于的不等式.
(1)因为,恒有,
所以令,得,所以.
令,得,所以.
令,得,
所以是偶函数.
(2)设,则是偶函数,且在上为增函数.
,即,
即.
由是偶函数,得,
由在上为增函数,得|m|<|2m+1|,即.
解得或.又,
所以实数的取值范围是.
练习册系列答案
相关题目