题目内容

【题目】某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[ 010],(1020],(2030],(3040],(4050]分组,得到频率分布直方图如下:

假设甲、乙两种酸奶独立销售且日销售量相互独立.

1)写出频率分布直方图(甲)中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,试比较的大小;(只需写出结论)

2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;

3)设表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求的数学期望.

【答案】1;(2042;(309

【解析】

试题()由各个小矩形的面积和为1,先求出,由频率分布直方图可看出,甲的销售量比较分散,而乙较为集中,由此可得出的大小关系;()首先设事件:在未来的某一天里,甲种酸奶的销售量不高于20箱;事件:在未来的某一天里,乙种酸奶的销售量不高于20箱;事件:在未来的某一天里,甲、乙两种酸奶的销售量恰好一个高于20箱且另一个不高于20箱;然后分别求出事件和事件的概率,最后由相互独立事件的概率乘法计算公式即可得出所求的结果;()首先由题意可知的可能取值为0123,然后运用相互独立重复试验的概率计算公式分别计算相应的概率,最后得出其分布列即可.

试题解析:()由各小矩形的面积和为1可得:,解之的

;由频率分布直方图可看出,甲的销售量比较分散,而乙较为集中,主要集中在箱,故

)设事件:在未来的某一天里,甲种酸奶的销售量不高于20箱;事件:在未来的某一天里,乙种酸奶的销售量不高于20箱;事件:在未来的某一天里,甲、乙两种酸奶的销售量恰好一个高于20箱且另一个不高于20箱.则.所以

)由题意可知,的可能取值为0123

所以的分布列为


0

1

2

3


0343

0441

0189

0027

所以的数学期望

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网