题目内容
【题目】某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:
假设甲、乙两种酸奶独立销售且日销售量相互独立.
(1)写出频率分布直方图(甲)中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(3)设表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求的数学期望.
【答案】(1),;(2)0.42;(3)0.9.
【解析】
试题(Ⅰ)由各个小矩形的面积和为1,先求出,由频率分布直方图可看出,甲的销售量比较分散,而乙较为集中,由此可得出与的大小关系;(Ⅱ)首先设事件:在未来的某一天里,甲种酸奶的销售量不高于20箱;事件:在未来的某一天里,乙种酸奶的销售量不高于20箱;事件:在未来的某一天里,甲、乙两种酸奶的销售量恰好一个高于20箱且另一个不高于20箱;然后分别求出事件和事件的概率,最后由相互独立事件的概率乘法计算公式即可得出所求的结果;(Ⅲ)首先由题意可知的可能取值为0,1,2,3,然后运用相互独立重复试验的概率计算公式分别计算相应的概率,最后得出其分布列即可.
试题解析:(Ⅰ)由各小矩形的面积和为1可得:,解之的
;由频率分布直方图可看出,甲的销售量比较分散,而乙较为集中,主要集中在箱,故
.
(Ⅱ)设事件:在未来的某一天里,甲种酸奶的销售量不高于20箱;事件:在未来的某一天里,乙种酸奶的销售量不高于20箱;事件:在未来的某一天里,甲、乙两种酸奶的销售量恰好一个高于20箱且另一个不高于20箱.则,.所以.
(Ⅲ)由题意可知,的可能取值为0,1,2,3.
,,
,.
所以的分布列为
0 | 1 | 2 | 3 | |
0.343 | 0.441 | 0.189 | 0.027 |
所以的数学期望.