题目内容

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.
(1)求曲线C的直角坐标方程;
(2)若曲线C1 (α为参数)与曲线C所表示的图形都相切,求r的值.

【答案】
(1)

解:在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.

两边同时乘以ρ,可得ρ2=4ρsinθ,即 x2+y2=4y,即曲线C的直角坐标方程为 (x﹣0)2+(y﹣2)2=4.


(2)

解:曲线C1 (α为参数),即 (x﹣3)2+(y+2)2=r2

根据它与曲线C所表示的图形都相切,∴两圆的圆心距等于半径之和或等于半径之差,

故有 =2+|r|,或 =|2﹣|r||.

解得r=±3 或r=±7


【解析】(1)直接利用极坐标与直角坐标的互化公式把曲线C的极坐标方程化为直角坐标方程.(2)把曲线C1的参数方程化为直角坐标方程,根据两圆的圆心距等于半径之和或等于半径之差列出方程,解方程求得r的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网