题目内容
【题目】已知,在区间上存在三个不同的实数,使得以为边长的三角形是直角三角形,则的取值范围是( )
A. B.
C. D.
【答案】D
【解析】f(x)=x3﹣3x+2+m,求导f′(x)=3x2﹣3由f′(x)=0得到x=1或者x=﹣1,
又x在[0,2]内,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,
则f(x)min=f(1)=m,f(x)max=f(2)=m+4,f(0)=m+2.
∵在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是构成直角三角形,
∴2m2<(m+4)2,即m2﹣8m﹣16<0,解得4﹣<m<4+,
又已知m>0,∴0<m<4+.
故选:D.
练习册系列答案
相关题目
【题目】通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下列联表:
男生 | 女生 | 合计 | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
总计 | 50 | 50 | 100 |
Ⅰ从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;
Ⅱ根据以上列联表,是否有以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:
参考公式: ,其中