题目内容
已知数列满足: ().
(1)求的值;
(2)求证:数列是等比数列;
(3)令,,如果对任意,都有,
求实数的取值范围.
(1)
(2)根据等比数列的定义只要证明从第二项起,每一项与前一项的比值为定值即可。
(3)
解析试题分析:解:(I) 3分
(II)由题可知: ①
②
②-①可得 ..5分
即:,又 7分
所以数列是以为首项,以为公比的等比数列 8分
(Ⅲ)由(2)可得, 9分
10分
由可得
由可得 11分
所以
故有最大值
所以,对任意,有 13分
如果对任意,都有,即成立,
则,故有:, 15分
解得或
所以,实数的取值范围是 16
考点:等比数列
点评:解决的关键是根据数列的定义,以及不等式来综合运用,属于中档题。
练习册系列答案
相关题目