题目内容
【题目】函数f(x)=6cos2 + sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ , ),求f(x0+1)的值.
【答案】
(1)解:由已知可得,f(x)=3cosωx+ sinωx=2 sin(ωx+ ),
又正三角形ABC的高为2 ,从而BC=4,
∴函数f(x)的周期T=4×2=8,即 =8,ω= ,
∴函数f(x)的值域为[﹣2 ,2 ]
(2)解:∵f(x0)= ,由(1)有f(x0)=2 sin( x0+ )= ,
即sin( x0+ )= ,由x0∈(﹣ , ),知 x0+ ∈(﹣ , ),
∴cos( x0+ )= .
∴f(x0+1)=2 sin[( x0+ )+ ]=2 [sin( x0+ )cos +cos( x0+ )sin ]
=2 ( × + × )=
【解析】(1)将f(x)化简为f(x)=2 sin(ωx+ ),利用正弦函数的周期公式与性质可求ω的值及函数f(x)的值域;(2)由x0∈(﹣ , ),知 x0+ ∈(﹣ , ),由f(x0)= ,可求得sin( x0+ )= ,利用两角和的正弦公式即可求得f(x0+1).
【题目】某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 10 | 13 | 9.9 | 7 | 10 | 13 | 10.1 | 7 | 10 |
经过长期观测,y=f(t)可近似的看成是函数y=Asinωt+b
(1)根据以上数据,求出y=f(t)的解析式;
(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?