题目内容
通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
| 男 | 女 | 总计 |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
试考查大学生“爱好该项运动是否与性别有关”,若有关,请说明有多少把握。
有99%以上的把握认为“爱好该项运动与性别有关”.
解析试题分析:由已知中判断爱好该项运动是否与性别有关时,由列联表中的数据此算得k2≈7.8,且7.8>6.635,而P(k2≥6.635)≈0.01,故我们有99%的把握认为爱好该项运动与性别有关.则出错的可能性为1%.
试题解析:由>6.635,所以有99%以上的把握认为“爱好该项运动与性别有关”。 12分‘
考点:独立性检验..
练习册系列答案
相关题目
某种产品的广告费用支出(万元)与销售额(万元)之间有如下的对应数据:
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为9万元时,销售收入的值.
参考公式:回归直线的方程,其中
.
某中学将名高一新生分成水平相同的甲、乙两个“平行班”,每班人,吴老师采用、两种不同的教学方式分别在甲、乙两个班进行教学实验.为了解教学效果,期末考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出的茎叶图如下:
记成绩不低于分者为“成绩优秀”.
(1)在乙班样本的个个体中,从不低于分的成绩中随机抽取个,记随机变量为抽到“成绩优秀”的个数,求的分布列及数学期望;
(2)由以上统计数据填写下面列联表,并判断有多大把握认为“成绩优秀”与教学方式有关?
| 甲班(方式) | 乙班(方式) | 总计 |
成绩优秀 | | | |
成绩不优秀 | | | |
总计 | | | |
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y /颗 | 23 | 25 | 30 | 26 | 16 |
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
性别 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.
附:
P(K2≥x0) | 0.050 | 0.010 | 0.001 |
x0 | 3.841 | 6.635 | 10.828 |
χ2=
某单位有2000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:
人数 | 管理 | 技术开发 | 营销 | 生产 | 共计 |
老年 | 40 | 40 | 40 | 80 | 200 |
中年 | 80 | 120 | 160 | 240 | 600 |
青年 | 40 | 160 | 280 | 720 | 1 200 |
小计 | 160 | 320 | 480 | 1 040 | 2 000 |
(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?