题目内容
【题目】已知函数f(x)=|2x﹣1|﹣3|x+1|,设f(x)的最大值为M.
(1)求M;
(2)若正数a,b满足Mab,证明:a4b+ab4.
【答案】(1)M=3(2)证明见解析;
【解析】
(1)由f(x)=|2x﹣1|﹣3|x+1|=|2x﹣1|﹣|2x+2|﹣|x+1|,结合绝对值不等式的性质和绝对值的几何意义,可得所求最大值;
(2)由(1)可得3ab,a4b+ab4=ab(a3+b3)()(a3+b3),再由基本不等式即可得证.
解:(1)函数f(x)=|2x﹣1|﹣3|x+1|
=|2x﹣1|﹣|2x+2|﹣|x+1|≤|2x﹣1﹣2x﹣2|﹣|﹣1+1|=3,
当x=﹣1时,f(x)取得最大值3,即M=3;
(2)证明:正数a,b满足3ab,
故a4b+ab4=ab(a3+b3)()(a3+b3)(1+1)
(2+2),当且仅当a=b时等号成立,
故a4b+ab4.
【题目】今年情况特殊,小王在居家自我隔离时对周边的水产养殖产业进行了研究.、两个投资项目的利润率分别为投资变量和.根据市场分析,和的分布列分别为:
5% | 10% | |||
0.8 | 0.2 | |||
2% | 8% | 12% | ||
0.2 | 0.5 | 0.3 | ||
(1)若在两个项目上各投资万元,和分别表示投资项目和所获得的利润,求方差,;
(2)若在两个项目上共投资万元,那么如何分配,能使投资项目所得利润的方差与投资项目所得利润的方差的和最小,最小值是多少?
(注:)
【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.
(Ⅰ)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.
身高较矮 | 身高较高 | 合计 | |
体重较轻 | |||
体重较重 | |||
合计 |
(Ⅱ)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 |
②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.小明重新根据最小二乘法的思想与公式,已算出,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.
参考数据:
,,,,
参考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |