题目内容
4.数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,试推测出数列{an}的通项公式为an=$\frac{1}{2n-1}$.分析 an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,两边取倒数:$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+2,利用等差数列的通项公式即可得出.
解答 解:∵an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+2,即$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为1,公差为2.
∴$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,
∴an=$\frac{1}{2n-1}$.
故答案为:$\frac{1}{2n-1}$.
点评 本题考查了等差数列的通项公式,考查了变形能力、计算能力,属于中档题.
练习册系列答案
相关题目
15.已知抛物线y=$\frac{{x}^{2}}{4}$与直线y=$\frac{3}{4}$x+1交于点P,Q,则如图所示阴影部分的面积为( )
A. | $\frac{65}{12}$ | B. | $\frac{85}{16}$ | C. | $\frac{143}{24}$ | D. | $\frac{95}{6}$ |
13.学校组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲乙两位同学进行了8次测试,且每次测试之间是相互独立.成绩如下:(单位:个/分钟)
(1)用茎叶图表示这两组数据;
(2)从统计学的角度考虑,你认为选派那位学生参加比赛合适,请说明理由?
(3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于79个/分钟的次数为ξ,求ξ的分布列及数学期望Eξ.
(参考数据:22+12+112+102+62+72+12+22=316,02+112+122+22+52+52+42+32)
甲 | 80 | 81 | 93 | 72 | 88 | 75 | 83 | 84 |
乙 | 82 | 93 | 70 | 84 | 77 | 87 | 78 | 85 |
(2)从统计学的角度考虑,你认为选派那位学生参加比赛合适,请说明理由?
(3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于79个/分钟的次数为ξ,求ξ的分布列及数学期望Eξ.
(参考数据:22+12+112+102+62+72+12+22=316,02+112+122+22+52+52+42+32)
14.已知函数f(x)=ex-1,g(x)=-x2+4x-3,若f(a)=g(b),则b的取值范围是( )
A. | $[2-\sqrt{2},2+\sqrt{2}]$ | B. | $(2-\sqrt{2},2+\sqrt{2})$ | C. | [1,3] | D. | (1,3) |