题目内容

已知动圆经过点A(3,0),且和直线x+3=0相切,
(1)求动圆圆心的轨迹C的方程;
(2)已知曲线C上一点M,且|AM|=5,求M点的坐标.
(1)设动圆圆心C(x,y),
∵动圆经过点A(3,0),且和直线x+3=0相切,
∴动圆圆心到点A(3,0)的距离和到直线x+3=0的距离相等,
∴轨迹为以A为焦点,以x+3=0为准线的抛物线,其方程为y2=12x;
(2)设M(x0,y0),则x0+3=5,∴x0=2.
代入抛物线方程得:y02=24y0=±2
6

∴M(2,±2
6
).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网