题目内容
(本题12分)已知.
(1)求函数的定义域;
(2)判断函数的奇偶性,并予以证明;
(3)求使的的取值范围.
略
【解析】略
(本题12分)已知函数的图像关于原点对称,并且当时,,试求在上的表达式,并画出它的图像,根据图像写出它的单调区间。
(本题12分)已知函数(1)求的定义域;(2)求的值域。
(本题12分)
已知函数
(1)证明:函数关于点对称.
(2)求的值.
(本题12分)已知函数.
(1)当时,求函数的单调递减区间;
(2)当时,在上恒大于0,求实数的取值范围.
(本题12分)已知关于的不等式,其中.
(Ⅰ)当变化时,试求不等式的解集 ;
(Ⅱ)对于不等式的解集,若满足(其中为整数集). 试探究集合能否为有限集?若能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.