题目内容

已知A,B,C分别为△ABC的三边a,b,c所对的角,向量
m
=(sinA,sinB)
n
=(cosB,cosA)
,且
m
n
=sin2C

(1)求角C的大小;
(2)若sinA,sinC,sinB成等差数列,且
CA
CB
=18
,求边c的长.
(1)∵
m
=(sinA,sinB),
n
=(cosB,cosA),
m
n
=sin2C,即sinAcosB+sinBcosA=sin(A+B)=sinC=sin2C=2sinCcosC,
∵sinC≠0,
∴cosC=
1
2

∵C为三角形内角,
∴C=
π
3

(2)∵sinA,sinC,sinB成等差数列,
∴2sinC=sinA+sinB,
利用正弦定理化简得:2c=a+b,
CA
CB
=18,
∴abcosC=
1
2
ab=18,即ab=36,
由余弦定理得c2=a2+b2-2abcosC=a2+b2-ab=(a+b)2-3ab,
将a+b=2c,ab=36代入得:c2=4c2-108,即c2=36,
解得:c=6.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网