题目内容
已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=.求椭圆的方程.
, 或
本小题考查椭圆的性质、两点的距离公式、两条直线垂直条件、二次方程根与系数的关系及分析问题的能力.满分12分.
解:求椭圆方程为
依题意知,点P、Q的坐标满足方程组
将②式代入①式,整理得(a2+b2)x2+2a2x+a2(1-b2)="0, " ③ ——2分
设方程③的两个根分别为x1,x2,那么直线y=x+1与椭圆的交点为
P(x1,x1+1),Q(x2,x2+1). ——3分
由题设OP⊥OQ,|PQ|=,可得
整理得
——6分解这个方程组,得 或
根据根与系数的关系,由③式得
(Ⅰ) 或 (Ⅱ) ——10分
解方程组(Ⅰ),(Ⅱ),得 或
故所求椭圆的方程为, 或 ——12分
解:求椭圆方程为
依题意知,点P、Q的坐标满足方程组
|
设方程③的两个根分别为x1,x2,那么直线y=x+1与椭圆的交点为
P(x1,x1+1),Q(x2,x2+1). ——3分
由题设OP⊥OQ,|PQ|=,可得
整理得
|
根据根与系数的关系,由③式得
(Ⅰ) 或 (Ⅱ) ——10分
解方程组(Ⅰ),(Ⅱ),得 或
故所求椭圆的方程为, 或 ——12分
练习册系列答案
相关题目