题目内容

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.
分析:(1)先对函数进行求导,通过a的取值,求出函数的根,然后通过导函数的值的符号,推出函数的单调性.
(2)根据导函数的根,判断a的范围,进而解出直线l的方程,利用l与x轴的交点为(x0,0),可解出a的值.
解答:解:(1)f′(x)=x2+2x+a=(x+1)2+a-1.
①当a≥1时,f′(x)≥0,
且仅当a=1,x=-1时,f′(x)=0,
所以f(x)是R上的增函数;
②当a<1时,f′(x)=0,有两个根,
x1=-1-
1-a
,x2=-1+
1-a

当x∈(-∞,-1-
1-a
)
时,f′(x)>0,f(x)是增函数.
当x∈(-1-
1-a
,-1+
1-a
)
时,f′(x)<0,f(x)是减函数.
当x∈(-1+
1-a
,+∞)
时,f′(x)>0,f(x)是增函数.
(2)由题意x1,x2,是方程f′(x)=0的两个根,
故有a<1,x12=-2x1-ax22=-2x2-a
因此f(x1)=
1
3
x13+x12+ax1
=
1
3
x1(-2x1-a) +x12+ax1

=
1
3
x12+
2
3
ax1

=
1
3
(-2x1-a)  +
2
3
ax1
=
2
3
(a-1) x1-
1
3
a

同理f(x2)=
2
3
(a-1)x2-
1
3
a

因此直线l的方程为:y=
2
3
(a-1)x -
1
3
a

设l与x轴的交点为(x0,0)得x0=
a
2(a-1)

f(x0)=
1
3
[
a
2(a-1)
]
3
+[
a
2(a-1)
]
2
+a
a
2(a-1)

=
a2
24(a-1)3
(12a2-17a+6)

由题设知,点(x0,0)在曲线y=f(x)上,故f(x0)=0,
解得a=0,或a=
2
3
或a=
3
4
点评:本题主要考查函数在某点取得极值的条件,考查分类讨论,函数与方程的思想,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网