题目内容
已知双曲线E:
-
=1(a>0,b>0)的离心率为e,左、右两焦点分别为F1、F2,焦距为2c,抛物线C以F2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a2,则e的值为( )
x2 |
a2 |
y2 |
b2 |
A.
| B.3 | C.
| D.
|
如右图所示,设点P的坐标为(x0,y0),由抛物线以F2为顶点,F1为焦点,可得其准线的方程为x=3c,
根据抛物线的定义可得|PF1|=|PR|=3c-x0,又由点P为双曲线上的点,
根据双曲线的第二定义可得
=e,即得|PF2|=ex0-a,
由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,由e>1可得e=
,
故选A.
根据抛物线的定义可得|PF1|=|PR|=3c-x0,又由点P为双曲线上的点,
根据双曲线的第二定义可得
|PF2| | ||
x0-
|
由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,由e>1可得e=
3 |
故选A.
练习册系列答案
相关题目