题目内容
【题目】已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,
(1)求椭圆的方程;
(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.
【答案】(1)(2)
【解析】
(1)由直线可得椭圆右焦点的坐标为,由中点可得,且由斜率公式可得,由点在椭圆上,则,二者作差,进而代入整理可得,即可求解;
(2)设直线,点到直线的距离为,则四边形的面积为,将代入椭圆方程,再利用弦长公式求得,利用点到直线距离求得,根据直线l与线段AB(不含端点)相交,可得,即,进而整理换元,由二次函数性质求解最值即可.
(1)直线与x轴交于点,所以椭圆右焦点的坐标为,故,
因为线段AB的中点是,
设,则,且,
又,作差可得,
则,得
又,
所以,
因此椭圆的方程为.
(2)由(1)联立,解得或,
不妨令,易知直线l的斜率存在,
设直线,代入,得,
解得或,
设,则,
则,
因为到直线的距离分别是,
由于直线l与线段AB(不含端点)相交,所以,即,
所以,
四边形的面积,
令,,则,
所以,
当,即时,,
因此四边形面积的最大值为.
练习册系列答案
相关题目