题目内容
【题目】函数是实数集上的奇函数, 当时, .
(1)求的值;
(2)求函数的表达式;
(3)求证:方程在区间(0,+∞)上有唯一解.
【答案】(1)2(2)f(x)=(3)见解析
【解析】
试题
(1)由题函数 是实数集 上的奇函数.所以 .则易求
(2)由题函数 是当上的奇函数 ;
又当 时, ,所以 所以-f(x)=log2(-x)-x-3,从而f(x)=-log2(-x)+x+3.
所以
(3)因为 ,所以方程 在区间 上有解
又方程 可化为 设函数 以下证明方程 在区间上只有一个解即可.
试题解析(1)函数f(x)是实数集R上的奇函数.
所以f(-1)=-f(1).
因为当x>0时,f(x)=log2x+x-3,所以f(1)=log21+1-3=-2.
所以f(-1)=-f(1)=2.
(2)当x=0时,f(0)=f(-0)=-f(0),解得f(0)=0; >
当x<0时,-x>0,所以f(-x)=log2(-x)+(-x)-3=log2(-x)-x-3.
所以-f(x)=log2(-x)-x-3,从而f(x)=-log2(-x)+x+3.
所以f(x)=
(3)因为f(2)=log22+2-3=0,所以
方程f(x)=0在区间(0,+∞)上有解x=2.
又方程f(x)=0可化为log2x=3-x.
设函数g(x)=log2x,h(x)=3-x.
由于g(x)在区间(0,+∞)上是单调增函数
h(x)在区间(0,+∞)上是单调减函数,
所以,方程g(x)=h(x) 在区间(0,+∞)上只有一个解.
所以,方程f(x)=0在区间(0,+∞)上有唯一解.
【题目】
某学校高一数学兴趣小组对学生每周平均体育锻炼小时数与体育成绩优秀(体育成绩满分100分,不低于85分称优秀)人数之间的关系进行分析研究,他们从本校初二,初三,高一,高二,高三年级各随机抽取了40名学生,记录并整理了这些学生周平均体育锻炼小时数与体育成绩优秀人数,得到如下数据表:
初二 | 初三 | 高一 | 高二 | 高三 | |
周平均体育锻炼小时数工(单位:小时) | 14 | 11 | 13 | 12 | 9 |
体育成绩优秀人数y(单位:人) | 35 | 26 | 32 | 26 | 19 |
该兴趣小组确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.
(1)若选取的是初三,高一,高二的3组数据,请根据这3组数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过1,则认为得到的线性回归方程是可靠的,试问(1)中所得到的线性回归方程是否可靠?
参考数据:,.
参考公式:,.