题目内容
19.设集合M⊆{1,2,…,2011},满足:在M的任意三个元素中,都可以找到两个元素a,b,使得a|b或b|a,求|M|的最大值(其中|M|表示集合M的元素个数)分析 当M={1,2,22,23,…210,3,3×2,3×22,…,3×29}时满足条件,此时|M|=21.利用反证法证明原式子成立.
解答 解:当M={1,2,22,23,…210,3,3×2,3×22,…,3×29}时满足条件,此时|M|=21
假设|M|≥22,设M中得元素为a1<a2<…<ak(k≥22)
首先证明an+2≥2an,否则an<an+1<an+2<2an,那么an,an+1,an+2中任意两个元素之间没有整数倍数关系,矛盾!
由上述结论知:a4≥2a2≥4,
a6≥2a4≥8,…${a}_{22}≥2{a}_{20}≥{2}^{11}>2011$矛盾!
综上,|M|的最大值为21.
点评 本题主要考查了集合在代数中的综合应用,属于难度较大的题型,常用作奥林匹克竞赛题目.
练习册系列答案
相关题目
9.某气象站观测点记录的连续4天里,AQI指数M与当天的空气水平可见度y(单位cm)的情况如下表1:
哈尔滨市某月AQI指数频数分布如下表2:
(1)设x=$\frac{M}{100}$,根据表1的数据,求出y关于x的回归方程;
(参考公式:$\hat y=\hat bx+\hat a$;其中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$,$\overline a=\overline y-\hat b\overline x$)
(2)小张开了一家洗车店,经统计,当M不高于200时,洗车店平均每天亏损约2000元;当M在200至400时,洗车店平均每天收入约4000元;当M大于400时,洗车店平均每天收入约7000元;根据表2估计小张的洗车店该月份平均每天的收入.
M | 900 | 700 | 300 | 100 |
y | 0.5 | 3.5 | 6.5 | 9.5 |
M | [0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
频数 | 3 | 6 | 12 | 6 | 3 |
(参考公式:$\hat y=\hat bx+\hat a$;其中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$,$\overline a=\overline y-\hat b\overline x$)
(2)小张开了一家洗车店,经统计,当M不高于200时,洗车店平均每天亏损约2000元;当M在200至400时,洗车店平均每天收入约4000元;当M大于400时,洗车店平均每天收入约7000元;根据表2估计小张的洗车店该月份平均每天的收入.
10.若复数z=2-i ( i为虚数单位),则$\frac{10}{z}$=( )
A. | 4+2i | B. | 20+10i | C. | 4-2i | D. | $\frac{20}{3}+\frac{10}{3}i$ |
7.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如表:
(Ⅰ)请求出表中的x1,x2,x3的值,并写出函数f(x)的解析式;
(Ⅱ)将f(x)的图象向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量$\overrightarrow{NM}$与$\overrightarrow{ON}$夹角θ的大小.
x | x1 | $\frac{1}{3}$ | x2 | $\frac{7}{3}$ | x3 |
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
Asin(ωx+φ)+B | 0 | $\sqrt{3}$ | 0 | -$\sqrt{3}$ | 0 |
(Ⅱ)将f(x)的图象向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量$\overrightarrow{NM}$与$\overrightarrow{ON}$夹角θ的大小.
14.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为$\sqrt{3}$,则C的焦距等于( )
A. | 2 | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 4 |
4.函数y=cos2(x+$\frac{π}{2}$)的单调递增区间( )
A. | (2kπ,2kπ+π)k∈Z | B. | (2kπ,2kπ+2π)k∈Z | C. | (kπ,kπ+$\frac{π}{2}$)k∈Z | D. | (kπ+$\frac{π}{2}$,kπ+π)k∈Z |