ÌâÄ¿ÄÚÈÝ
9£®ÉéÊǹ㷺·Ö²¼ÓÚ×ÔÈ»½çÖеķǽðÊôÔªËØ£¬³¤ÆÚÒûÓøßÉéË®»áÖ±½ÓΣº¦ÈºÖÚµÄÉíÐĽ¡¿µºÍÉúÃü°²È«£¬¶ø½üˮũ´åµØÇø£¬Ë®ÖÊÇé¿ö¸üÐèÒª¹Ø×¢£®ÎªÁ˽â¼×¡¢ÒÒÁ½µØÇøÅ©´å¾ÓÃñÒûÓÃË®ÖÐÉ麬Á¿µÄ»ù±¾Çé¿ö£¬·Ö±ðÔÚÁ½µØËæ»úÑ¡È¡10¸ö´å×Ó£¬ÆäÉ麬Á¿µÄµ÷²éÊý¾ÝÈçÏ£¨µ¥Î»£ºmg/1000L£©£º¼×µØÇøµÄ10¸ö´å×ÓÒûÓÃË®ÖÐÉéµÄº¬Á¿£º
52 32 41 72 43 35 45 61 53 44
ÒÒµØÇøµÄ10¸ö´å×ÓÒûÓÃË®ÖÐÉéµÄº¬Á¿£º
44 56 38 61 72 57 64 71 58 62
£¨¢ñ£©¸ù¾ÝÁ½×éÊý¾ÝÍê³É¾¥Ò¶Í¼£¬ÊԱȽÏÁ½¸öµØÇøÖÐÄĸöµØÇøµÄÒûÓÃË®ÖÐÉ麬Á¿¸ü¸ß£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©¹ú¼Ò¹æ¶¨¾ÓÃñÒûÓÃË®ÖÐÉéµÄº¬Á¿²»µÃ³¬¹ý50£¬ÏÖÒ½ÁÆÎÀÉú×éÖ¯¾ö¶¨ÏòÁ½¸öµØÇøÖÐÿ¸öÉ鳬±êµÄ´å×ÓÅÉפһ¸öÒ½ÁƾÈÖúС×飮ÓÃÑù±¾¹À¼Æ×ÜÌ壬°ÑƵÂÊ×÷Ϊ¸ÅÂÊ£¬Èô´ÓÒÒµØÇøËæ»ú³éÈ¡3¸ö´å×Ó£¬ÓÃX±íʾÅÉפµÄÒ½ÁÆС×éÊý£¬ÊÔд³öXµÄ·Ö²¼Áв¢ÇóXµÄÆÚÍû£®
·ÖÎö £¨I£©·¨1£ºÇó³ö¼×µØÇøµ÷²éÊý¾ÝµÄƽ¾ùÊýΪ$\overline x$£¬ÒÒµØÇøµ÷²éÊý¾ÝµÄƽ¾ùÊýΪ$\overline y$£¬ÍƳöÒÒµØÇøµÄÒûÓÃË®ÖÐÉ麬Á¿¸ü¸ß£®
·¨2£ºÀûÓþ¥Ò¶Í¼¿ÉÖ±½ÓÍƳö½á¹û£¬ÒÒµØÇøµÄÒýÓÃË®ÖÐÉ麬Á¿¸ü¸ß£®
£¨II£©ÓÉÌâ¿ÉÖªÈô´ÓÒÒµØÇøËæ¼´³éÈ¡Ò»¸ö´å×Ó£¬ÐèÒªÅÉפҽÁÆС×éµÄ¸ÅÂÊ£ºµÃµ½XµÄ·Ö²¼ÁУ¬Çó³öÆÚÍû£®
½â´ð ½â£º£¨I£©·¨1£ºÉè¼×µØÇøµ÷²éÊý¾ÝµÄƽ¾ùÊýΪ$\overline x$£¬
$\overline x=\frac{1}{10}£¨52+32+41+72+43+35+45+61+53+44£©=47.8$£»
ÉèÒÒµØÇøµ÷²éÊý¾ÝµÄƽ¾ùÊýΪ$\overline y$£¬$\overline y=\frac{1}{10}£¨44+56+38+61+72+57+64+71+58+62£©=58.3$£®
ÓÉÒÔÉϼÆËã½á¹û¿ÉµÃ$\overline{x}£¼\overline{y}$£¬Òò´Ë¿ÉÒÔ¿´³öÒÒµØÇøµÄÒûÓÃË®ÖÐÉ麬Á¿¸ü¸ß£®
·¨2£º´Ó¾¥Ò¶Í¼¿ÉÒÔ¿´³ö£¬¼×µØÇøµÄµ÷²é½á¹ûÖÐÓÐ80%µÄÒ¶¼¯ÖÐÔÚ¾¥¡°3¡±¡°4¡±¡°5¡±£¬¶øÒÒµØÇøÓÐ80%µÄÒ¶¼¯ÖÐÔÚ¾¥¡°5¡±¡°6¡±¡°7¡±£¬Òò´ËÒÒµØÇøµÄÒýÓÃË®ÖÐÉ麬Á¿¸ü¸ß¡£¨5·Ö£©
£¨II£©ÓÉÌâ¿ÉÖªÈô´ÓÒÒµØÇøËæ¼´³éÈ¡Ò»¸ö´å×Ó£¬ÐèÒªÅÉפҽÁÆС×éµÄ¸ÅÂÊ£º
$\begin{array}{l}P£¨X=0£©=C_3^0•{£¨\frac{4}{5}£©^0}•{£¨\frac{1}{5}£©^3}=\frac{1}{125}£¬P£¨X=1£©=C_3^1•{£¨\frac{4}{5}£©^1}•{£¨\frac{1}{5}£©^2}=\frac{12}{125}\\ P£¨X=2£©=C_3^2•{£¨\frac{4}{5}£©^2}•{£¨\frac{1}{5}£©^1}=\frac{48}{125}£¬P£¨X=3£©=C_3^3•{£¨\frac{4}{5}£©^3}•{£¨\frac{1}{5}£©^0}=\frac{64}{125}\end{array}$
XµÄ·Ö²¼ÁÐΪ¡£¨10·Ö£©
X | 0 | 1 | 2 | 3 |
P | $\frac{1}{125}$ | $\frac{12}{125}$ | $\frac{48}{125}$ | $\frac{64}{125}$ |
µãÆÀ ±¾Ì⿼²é¾¥Ò¶Í¼ÒÔ¼°ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÆÚÍûµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®
A£® | 2x-3y-9=0 | B£® | 3x-2y-11=0 | C£® | 3x+2y-7=0 | D£® | x-y-5=0 |
A£® | y2-$\frac{{x}^{2}}{3}$=1 | B£® | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 | C£® | $\frac{{x}^{2}}{3}$-y2=1 | D£® | x2-$\frac{{y}^{2}}{3}$=1 |
A£® | £¨©Vp£©¡Å£¨©Vp£© | B£® | ©V£¨£¨©Vp£©¡Ä£¨©Vp£©£© | C£® | £¨©Vp£©¡Ä£¨©Vp£© | D£® | ©V£¨p¡Åp£© |