题目内容

【题目】现需要设计一个仓库,由上下两部分组成,上部的形状是正四棱锥,下部的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.

(1)若,则仓库的容积是多少?

(2)若正四棱锥的侧棱长为,当为多少时,下部的正四棱柱侧面积最大,最大面积是多少?

【答案】(1)(2)当时,下部分正四棱柱侧面积最大,最大面积是.

【解析】

(1)直接利用棱锥和棱柱的体积公式求解即可;

(2)设,下部分的侧面积为,由已知正四棱柱的高是正四棱锥的高的4倍.可以求出的长,利用正四棱锥的侧棱长,结合勾股定理,可以求出的长,由正方形的性质,可以求出的长,这样可以求出的表达式,利用配方法,可以求出的最大值.

(1),则

.

故仓库的容积为.

(2)设,下部分的侧面积为

时,

答:当时,下部分正四棱柱侧面积最大,最大面积是.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网