题目内容
【题目】轮船由甲地逆水匀速行驶至乙地,甲、乙两地相距s(km),水流速度为p(km/h),轮船在静水中的最大速度为q(km/h)(p,q为常数,且q>p),已知轮船每小时的燃料费用与轮船在静水中的速度v(km/h)成正比,比例系数为常数k.
(1)将全程燃料费用y(元)表示为静水中速度v(km/h)的函数;
(2)若s=100,p=10,q=110,k=2,为了使全程的燃料费用最少,轮船的实际行驶速度应为多少?
【答案】(1)详见解析;(2)详见解析.
【解析】试题分析:(1)根据路程,速度和时间的关系列出函数解析式;(2)由(1)得出的函数解析式,将s=100,p=10,q=110,k=2代入,可得函数在(10,110]上是减函数,根据单调性可求出最小值.
试题解析:
(1)∵轮船行驶全程的时间t=,∴y= (p<v≤q).
(2)若s=100,p=10,q=110,k=2,则y==200(1+)(10<v≤110).
由于f(v)=在(10,110]上是减函数,所以当v=110时,函数y==200(1+)取得最小值,且最小值为220.即当轮船的实际行驶速度为时,全程的燃料费用最少.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.