题目内容
设函数
,其中
.
(1)当
时,求在曲线
上一点
处的切线方程;
(2)求函数
的极值点。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703710899.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703725410.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703741361.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703756562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703772650.png)
(2)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703788447.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703819407.png)
(2)
时,
在
上有唯一的极小值点
;
时,
有一个极大值点
和一个极小值点
;
时, 函数
在
上无极值点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703819407.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703834403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703788447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703866546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703881722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703897454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703788447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703928698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703881722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703959384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703788447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703866546.png)
试题分析:解:(I)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703741361.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704131815.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704162481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704178831.png)
在点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703772650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704224592.png)
∴所求的切线方程为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703819407.png)
(II) 函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704131815.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703866546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240107043022245.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703959384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704349567.png)
即当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703959384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703788447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703866546.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704412371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704443535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703928698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703881722.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703834403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704521767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704536788.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704552938.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704568466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704583519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704599585.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703788447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703866546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703881722.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703897454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704833769.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704568466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704880808.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704568466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010704911521.png)
此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703788447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703928698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703881722.png)
综上可知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703834403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703788447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703866546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703881722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703897454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703788447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703928698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703881722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703959384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703788447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010703866546.png)
点评:主要是考查了导数在研究函数中的应用,解决切线方程以及极值问题,属于基础题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目