题目内容

在△ABC中,a、b、c分别为角A、B、C的对边,设f(x)=a2x2-(a2-b2)x-4c2
(1)若,求角C的大小;
(2)若f(2)=0,求角C的取值范围.
【答案】分析:(1)由题意可得:a2-(a2-b2)-4c2=0,即可得到b=2c,根据正弦定理可得:sinB=2sinC,,可得,再结合角C的范围求出答案即可.
(2)由题意可得:a2+b2=2c2,根据余弦定理可得:再由2c2=a2+b2≥2ab可得ab≤c2,进而求出cosC的范围即可根据余弦函数求出角C的范围.
解答:解:(1)由题意可得:f(1)=0,
∴a2-(a2-b2)-4c2=0,
∴b2=4c2,即b=2c,
∴根据正弦定理可得:sinB=2sinC.
,可得





(2)若f(2)=0,则4a2-2(a2-b2)-4c2=0,
∴a2+b2=2c2
∴根据余弦定理可得:
又2c2=a2+b2≥2ab,
∴ab≤c2

点评:本题主要考查两角和与差的正弦函数,以及正弦定理与余弦定理等知识点,解决此类问题的关键是熟练掌握有关的公式与定理,并且进行正确的运算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网