题目内容
已知向量
(
cos
,
sin
) (
≠0 ),
=" (" – sin
,cos
),其中O为坐标原点。(1)若
=
–
,求向量
与
的夹角;(2)若|
|≥2|
|对任意实数
、
都成立,求实数
的取值范围。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538035238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538097192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538113187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538097192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538144244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538159206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538159206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538159206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538097192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538206333.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538035238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538144244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538035238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538144244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538097192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538159206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
(1)故当
>0时,向量
与
的夹角为
;当
<0时,向量
与
的夹角为
。(2)实数
的取值范围是
∪
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538035238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538144244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538378223.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538035238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538144244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538518353.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538549281.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538565280.gif)
(1)设向量
与
的夹角
,
则cos
=
,
当
>0时,cos
=
,
=
;
当
<0时,cos
= –
,
=
。
故当
>0时,向量
与
的夹角为
;
当
<0时,向量
与
的夹角为
。
(2)
对任意的
,
恒成立, 即 (
cos
+sin
)2 + (
sin
– cos
)2≥4对任意的
,
恒成立。
即
2 + 1 + 2
sin (
–
) ≥4对任意的
,
恒成立,
所以
或
解得:
≥3或
≤ –3 。
故所求实数
的取值范围是
∪
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538035238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538144244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538612193.gif)
则cos
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538612193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231345386271013.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538612193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538690210.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538612193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538378223.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538612193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538690210.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538612193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538518353.gif)
故当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538035238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538144244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538378223.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538035238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538144244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538518353.gif)
|
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538908501.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538097192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538159206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538097192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538159206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538097192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538159206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538097192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538159206.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538159206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538097192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538097192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538159206.gif)
|
|
|
|
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134539142561.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134539158566.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
故所求实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538081187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538549281.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134538565280.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目