题目内容
【题目】在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x﹣y,x+y),则A中的元素(﹣1,2)在集合B中的像( )
A.(﹣1,﹣3)
B.(1,3)
C.(3,1)
D.(﹣3,1)
【答案】D
【解析】解:由映射的对应法则f:(x,y)→(x﹣y,x+y),故A中元素(﹣1,2)在B中对应的元素为(﹣1﹣2,﹣1+2)
即(﹣3,1)
故选D
【考点精析】本题主要考查了映射的相关定义的相关知识点,需要掌握对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象;注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的.所以函数是映射,而映射不一定的函数才能正确解答此题.
练习册系列答案
相关题目
【题目】若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:
f(1)=﹣2 | f(1.5)=0.625 |
f(1.25)=﹣0.984 | f(1.375)=﹣0.260 |
f(1.438)=0.165 | f(1.4065)=﹣0.052 |
那么方程x3+x2﹣2x﹣2=0的一个近似根(精确到0.1)为( )
A.1.2
B.1.3
C.1.4
D.1.5