题目内容

【题目】为推导球的体积公式,刘徽制造了一个牟合方盖(在一个正方体内作两个互相垂直的内切圆柱,这两个圆柱的公共部分叫做牟合方盖),但没有得到牟合方盖的体积.200年后,祖暅给出牟合方盖的体积计算方法,其核心过程被后人称为祖暅原理:缘幂势既同,则积不容异.意思是,夹在两个平行平面间的两个几何体被平行于这两个平行平面的任意平面所截,如果截面的面积总相等,那么这两个几何体的体积也相等.现在截取牟合方盖的八分之一,它的外切正方体的棱长为1,如图所示,根据以上信息,则该牟合方盖的体积为( )

A. B. C. D.

【答案】B

【解析】分析:在高度处的截面,用平行与正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为,截得正方体所得面积为,解得椎体所得面积为

,求出,再由定积分求出锥体体积,由正方体的体积减去锥体体积即可.

详解:在高度处的截面,用平行与正方体上下底面的平面去截,

记截得两圆柱体公共部分所得面积为,截得正方体所得面积为

可得

,可得,则

所以该牟合方盖的体积为,故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网