ÌâÄ¿ÄÚÈÝ
£¨2012•Â¬ÍåÇøһģ£©ÒÑÖªº¯Êýf£¨x£©=
£¨tΪ³£Êý£©£®
£¨1£©µ±t=1ʱ£¬ÔÚͼÖеÄÖ±½Ç×ø±êϵÄÚ×÷³öº¯Êýy=f£¨x£©µÄ´óÖÂͼÏ󣬲¢Ö¸³ö¸Ãº¯ÊýËù¾ß±¸µÄ»ù±¾ÐÔÖÊÖеÄÁ½¸ö£¨Ö»ÐèдÁ½¸ö£©£®
£¨2£©Éèan=f£¨n£©£¨n¡ÊN*£©£¬µ±t£¾10£¬ÇÒt∉N*ʱ£¬ÊÔÅжÏÊýÁÐ{an}µÄµ¥µ÷ÐÔ²¢ÓÉ´Ëд³ö¸ÃÊýÁÐÖÐ×î´óÏîºÍ×îСÏ¿ÉÓÃ[t]À´±íʾ²»³¬¹ýtµÄ×î´óÕûÊý£©£®
£¨3£©ÀûÓú¯Êýy=f£¨x£©¹¹ÔìÒ»¸öÊýÁÐ{xn}£¬·½·¨ÈçÏ£º¶ÔÓÚ¸ø¶¨µÄ¶¨ÒåÓòÖеÄx1£¬Áîx2=f£¨x1£©£¬x3=f£¨x2£©£¬¡£¬xn=f£¨xn-1£©£¨n¡Ý2£¬n¡ÊN*£©£¬¡ÔÚÉÏÊö¹¹Ôì¹ý³ÌÖУ¬Èôxi£¨i¡ÊN*£©ÔÚ¶¨ÒåÓòÖУ¬Ôò¹¹ÔìÊýÁеĹý³Ì¼ÌÐøÏÂÈ¥£»Èôxi²»ÔÚ¶¨ÒåÓòÖУ¬Ôò¹¹ÔìÊýÁеĹý³ÌÍ£Ö¹£®ÈôÈ¡¶¨ÒåÓòÖеÄÈÎÒ»Öµ×÷Ϊx1£¬¶¼¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¬ÇóʵÊýtµÄÖµ£®
x+1-t | t-x |
£¨1£©µ±t=1ʱ£¬ÔÚͼÖеÄÖ±½Ç×ø±êϵÄÚ×÷³öº¯Êýy=f£¨x£©µÄ´óÖÂͼÏ󣬲¢Ö¸³ö¸Ãº¯ÊýËù¾ß±¸µÄ»ù±¾ÐÔÖÊÖеÄÁ½¸ö£¨Ö»ÐèдÁ½¸ö£©£®
£¨2£©Éèan=f£¨n£©£¨n¡ÊN*£©£¬µ±t£¾10£¬ÇÒt∉N*ʱ£¬ÊÔÅжÏÊýÁÐ{an}µÄµ¥µ÷ÐÔ²¢ÓÉ´Ëд³ö¸ÃÊýÁÐÖÐ×î´óÏîºÍ×îСÏ¿ÉÓÃ[t]À´±íʾ²»³¬¹ýtµÄ×î´óÕûÊý£©£®
£¨3£©ÀûÓú¯Êýy=f£¨x£©¹¹ÔìÒ»¸öÊýÁÐ{xn}£¬·½·¨ÈçÏ£º¶ÔÓÚ¸ø¶¨µÄ¶¨ÒåÓòÖеÄx1£¬Áîx2=f£¨x1£©£¬x3=f£¨x2£©£¬¡£¬xn=f£¨xn-1£©£¨n¡Ý2£¬n¡ÊN*£©£¬¡ÔÚÉÏÊö¹¹Ôì¹ý³ÌÖУ¬Èôxi£¨i¡ÊN*£©ÔÚ¶¨ÒåÓòÖУ¬Ôò¹¹ÔìÊýÁеĹý³Ì¼ÌÐøÏÂÈ¥£»Èôxi²»ÔÚ¶¨ÒåÓòÖУ¬Ôò¹¹ÔìÊýÁеĹý³ÌÍ£Ö¹£®ÈôÈ¡¶¨ÒåÓòÖеÄÈÎÒ»Öµ×÷Ϊx1£¬¶¼¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¬ÇóʵÊýtµÄÖµ£®
·ÖÎö£º£¨1£©µ±t=1ʱ£¬f£¨x£©=
=-1+
£¬»³öº¯ÊýµÄͼÏó£¬ÀûÓÃͼÏó¿ÉµÃº¯ÊýµÄÐÔÖÊ£»
£¨2£©an=
=-1+
£¬È·¶¨1¡Ün¡Ü[t]£¬n¡ÊN*ʱ£¬ÊýÁе¥µ÷µÝÔö£¬ÇÒ´Ëʱan¾ù´óÓÚ-1£»n¡Ý[t]+1£¬n¡ÊN*ʱ£¬ÊýÁе¥µ÷µÝÔö£¬ÇÒ´Ëʱan¾ùСÓÚ-1£¬Óɴ˿ɵýáÂÛ
£¨3£©º¯Êýf£¨x£©=
=tÔÚRÖÐÎÞʵÊý½â£¬Ò༴µ±x¡Ùtʱ£¬·½³Ì£¨1+t£©x=t2+t-1ÎÞʵÊý½â£¬´Ó¶ø¿ÉµÃʵÊýtµÄÖµ£®
x |
1-x |
-1 |
x-1 |
£¨2£©an=
n+1-t |
t-n |
-1 |
n-t |
£¨3£©º¯Êýf£¨x£©=
x+1-t |
t-x |
½â´ð£º½â£º£¨1£©µ±t=1ʱ£¬f£¨x£©=
=-1+
£®
ͼÏóÈçͼ£º£¨2·Ö£©
»ù±¾ÐÔÖÊ£º£¨Ã¿¸ö2·Ö£©
ÆæżÐÔ£º¼È·ÇÆ溯ÊýÓÖ·Çżº¯Êý£»
µ¥µ÷ÐÔ£ºÔÚ£¨-¡Þ£¬1£©ºÍ£¨1£¬+¡Þ£©ÉÏ·Ö±ðµÝÔö£»
Áãµã£ºx=0£»
×îÖµ£ºÎÞ×î´ó¡¢Ð¡Öµ£®£¨6·Ö£©
£¨2£©an=
=-1+
£¬
µ±1¡Ün¡Ü[t]£¬n¡ÊN*ʱ£¬ÊýÁе¥µ÷µÝÔö£¬ÇÒ´Ëʱan¾ù´óÓÚ-1£¬
µ±n¡Ý[t]+1£¬n¡ÊN*ʱ£¬ÊýÁе¥µ÷µÝÔö£¬ÇÒ´Ëʱan¾ùСÓÚ-1£¬£¨8·Ö£©
Òò´Ë£¬ÊýÁÐÖеÄ×î´óÏîΪa[t}=
£¬£¨10·Ö£©
×îСÏîΪa[t}+1=
£®£¨12·Ö£©
£¨3£©ÓÉÌâÒ⣬º¯Êýf£¨x£©=
=tÔÚRÖÐÎÞʵÊý½â£¬
Ò༴µ±x¡Ùtʱ£¬·½³Ì£¨1+t£©x=t2+t-1ÎÞʵÊý½â£®£¨14·Ö£©
ÓÉÓÚx=t²»ÊÇ·½³Ì£¨1+t£©x=t2+t-1µÄ½â£¬£¨16·Ö£©
Òò´Ë¶ÔÈÎÒâx¡ÊR£¬Ê¹·½³Ì£¨1+t£©x=t2+t-1ÎÞʵÊý½â£¬Ôòt=-1ΪËùÇ󣮣¨18·Ö£©
x |
1-x |
-1 |
x-1 |
ͼÏóÈçͼ£º£¨2·Ö£©
»ù±¾ÐÔÖÊ£º£¨Ã¿¸ö2·Ö£©
ÆæżÐÔ£º¼È·ÇÆ溯ÊýÓÖ·Çżº¯Êý£»
µ¥µ÷ÐÔ£ºÔÚ£¨-¡Þ£¬1£©ºÍ£¨1£¬+¡Þ£©ÉÏ·Ö±ðµÝÔö£»
Áãµã£ºx=0£»
×îÖµ£ºÎÞ×î´ó¡¢Ð¡Öµ£®£¨6·Ö£©
£¨2£©an=
n+1-t |
t-n |
-1 |
n-t |
µ±1¡Ün¡Ü[t]£¬n¡ÊN*ʱ£¬ÊýÁе¥µ÷µÝÔö£¬ÇÒ´Ëʱan¾ù´óÓÚ-1£¬
µ±n¡Ý[t]+1£¬n¡ÊN*ʱ£¬ÊýÁе¥µ÷µÝÔö£¬ÇÒ´Ëʱan¾ùСÓÚ-1£¬£¨8·Ö£©
Òò´Ë£¬ÊýÁÐÖеÄ×î´óÏîΪa[t}=
[t]+1-t |
t-[t] |
×îСÏîΪa[t}+1=
[t]+2-t |
t-1-[t] |
£¨3£©ÓÉÌâÒ⣬º¯Êýf£¨x£©=
x+1-t |
t-x |
Ò༴µ±x¡Ùtʱ£¬·½³Ì£¨1+t£©x=t2+t-1ÎÞʵÊý½â£®£¨14·Ö£©
ÓÉÓÚx=t²»ÊÇ·½³Ì£¨1+t£©x=t2+t-1µÄ½â£¬£¨16·Ö£©
Òò´Ë¶ÔÈÎÒâx¡ÊR£¬Ê¹·½³Ì£¨1+t£©x=t2+t-1ÎÞʵÊý½â£¬Ôòt=-1ΪËùÇ󣮣¨18·Ö£©
µãÆÀ£º±¾Ì⿼²éº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬¿¼²éº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÊýÁÐÓ뺯ÊýµÄ¹Øϵ£¬¿¼²é·½³Ì½âµÄÑо¿£¬È·¶¨º¯ÊýµÄµ¥µ÷ÐÔÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿