题目内容

某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施不能建设开发,且要求用栏栅隔开(栏栅要求在直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点M、N,切曲线于点P,设

(I)将(O为坐标原点)的面积S表示成f的函数S(t);
(II)若,S(t)取得最小值,求此时a的值及S(t)的最小值.

(Ⅰ);(Ⅱ)时,.

解析试题分析:(Ⅰ)根据导数的几何意义,直线的斜率为的导函数值,从而得到直线的方程为;进一步通过确定纵、横截距,计算三角形的面积.
(Ⅱ)应用导数研究函数的最值,遵循“求导数,求驻点,讨论导函数的正负,确定最值”. 注意到本题驻点唯一,其必是“最值点”.
试题解析:Ⅰ),直线的斜率为
直线的方程为
  3分
,得,
的面积,             6分

(Ⅱ),
因为,由,得,            9分
时, ,
时, .
已知在处, ,故有
故当时,               13分
考点:生活中的优化问题举例,导数的几何意义,直线方程,应用导数研究函数的最值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网