题目内容
【题目】为响应国家“精准扶贫,产业扶贫”的战略,某市面向全市征召《扶贫政策》义务宣传志愿者,从年龄在[20,45]的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示.
(1)求图中x的值,并根据频率分布直方图估计这500名志愿者中年龄在[35,40)岁的人数;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.
【答案】
(1)解:根据频率分布直方图的性质可得:(0.01+0.02+0.04+x+0.07)×5=1,解得x=0.06.
估计这500名志愿者中年龄在[35,40)岁的人数=0.06×5×500=150人
(2)解:用分层抽样的方法,从100名志愿者中选取10名,
则其中年龄“低于35岁”的人有6名,
“年龄不低于35岁”的人有4名.
故X的可能取值为0,1,2,3,
P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
P(X=3)= = .
故X的分布列为
X | 0 | 1 | 2 | 3 |
P |
EX=0× +1× +2× +3× =1.8
【解析】(1)根据小矩形的面积等于频率,而频率之和等于0.即可得出x,再用频率×总体容量即可.(2)分层抽样的方法,从100名志愿者中选取10名;则其中年龄“低于35岁”的人有10×(0.01+0.04+0.07)×5=6名,“年龄不低于35岁”的人有4名.X的可能取值为0,1,2,3,再利用超几何分布即可得出,再利用数学期望的计算公式即可得出.
练习册系列答案
相关题目