题目内容
【题目】在 中, 分别是角 的对边,且 .
(Ⅰ)求 的大小;
(Ⅱ)若 ,求 的面积
【答案】解:(Ⅰ)由 ,
得 .
∴ .
∴ .
∴ .
又 ,
∴ .
(Ⅱ)由 ,得 ,
又 ,
∴ .
∴
【解析】(Ⅰ)根据同角基本关系式tan=将已知等式中的正切转化成正余弦并整理,根据三角形内角和定理可知A+B+C=即可求出cosB,从而求出角B;(Ⅱ)由余弦定理可知b2=a2+c2-2accosB,将该式变形可得b2=(a+c)2-2ac-2accosB,从而可求出ac,再根据S=acsinB即可求解.
【考点精析】解答此题的关键在于理解两角和与差的余弦公式的相关知识,掌握两角和与差的余弦公式:,以及对余弦定理的定义的理解,了解余弦定理:;;.
练习册系列答案
相关题目
【题目】光明超市某种商品11月份(30天,11月1日为第一天)的销售价格P(单位:元)与时间t(单位:天,其中)组成有序实数对(t,P),点(t,P)落在如图所示的线段上.该商品日销售量Q(单位:件)与时间t(单位:天,其中t∈N)满足一次函数关系,Q与t的部分数据如表所示.
第t天 | 10 | 17 | 21 | 30 |
Q(件) | 180 | 152 | 136 | 100 |
(1)根据图象写出销售价格与时间t的函数关系式P=f(t).
(2)请根据表中数据写出日销售量Q与时间t的函数关系式Q=g(t).
(3)设日销售额为M(单位:元),请求出这30天中第几日M最大,最大值为多少?