ÌâÄ¿ÄÚÈÝ
£¨2006•±¦É½Çø¶þÄ££©¸ø³öº¯Êýf(x)=
+tx£¨x¡ÊR£©£®
£¨1£©µ±t¡Ü-1ʱ£¬Ö¤Ã÷y=f£¨x£©Êǵ¥µ÷µÝ¼õº¯Êý£»
£¨2£©µ±t=
ʱ£¬¿ÉÒÔ½«f£¨x£©»¯³Éf(x)=a(
+x)+b(
-x)µÄÐÎʽ£¬ÔËÓûù±¾²»µÈʽÇóf£¨x£©µÄ×îСֵ¼°´ËʱxµÄÈ¡Öµ£»
£¨3£©ÉèÒ»Ôª¶þ´Îº¯Êýg£¨x£©µÄͼÏó¾ùÔÚxÖáÉÏ·½£¬h£¨x£©ÊÇÒ»ÔªÒ»´Îº¯Êý£¬¼ÇF(x)=
+h(x)£¬ÀûÓûù±¾²»µÈʽÑо¿º¯ÊýF£¨x£©µÄ×îÖµÎÊÌ⣮
x2+4 |
£¨1£©µ±t¡Ü-1ʱ£¬Ö¤Ã÷y=f£¨x£©Êǵ¥µ÷µÝ¼õº¯Êý£»
£¨2£©µ±t=
1 |
2 |
x2+4 |
x2+4 |
£¨3£©ÉèÒ»Ôª¶þ´Îº¯Êýg£¨x£©µÄͼÏó¾ùÔÚxÖáÉÏ·½£¬h£¨x£©ÊÇÒ»ÔªÒ»´Îº¯Êý£¬¼ÇF(x)=
g(x) |
·ÖÎö£º£¨1£©Éèx1£¼x2£¬¶ÔÓ¦µÄº¯ÊýÖµ×÷²îºó»¯Îªf(x1)-f(x2)=(x1-x2)(
+t)£¬·Öx1+x2¡Ü0ºÍx1+x2£¾0ÅжϲéʵµÄ·ûºÅ£¬´Ó¶øµÃµ½½áÂÛ£»
£¨2£©°Ñt=
´úÈ룬ÓÉÌâÒâµÃµ½¹ØÓÚa£¬bµÄ¶þÔªÒ»´Î·½³Ì×飬Çó³öa£¬bµÄÖµ£¬È»ºóÖ±½ÓÀûÓûù±¾²»µÈʽÇó×îÖµ£»
£¨3£©Éè³öÁ½¸öº¯Êýg£¨x£©ºÍh£¨x£©µÄ½âÎöʽ£¬µÃµ½F£¨x£©ºóÓÃx´ú»»x-m£¬ÓÃ
t´ú»»t£¬ÔòF£¨x£©×ÜÄÜ»¯³ÉF(x)=
(
+tx+q)£¨r£¾0£©µÄÐÎʽ£¬·Ö|t|´óÓÚµÈÓÚ1¼°Ð¡ÓÚ1ÌÖÂÛ×îÖµÇé¿ö£®
x1+x2 | ||||
|
£¨2£©°Ñt=
1 |
2 |
£¨3£©Éè³öÁ½¸öº¯Êýg£¨x£©ºÍh£¨x£©µÄ½âÎöʽ£¬µÃµ½F£¨x£©ºóÓÃx´ú»»x-m£¬ÓÃ
a |
a |
x2+r2 |
½â´ð£º½â£º£¨1£©Éèx1£¼x2£¬Ôòf(x1)-f(x2)=
-
+t(x1-x2)
»¯³Éf(x1)-f(x2)=(x1-x2)(
+t)
ÏÔÈ»£¬µ±x1+x2¡Ü0ʱ£¬f£¨x1£©-f£¨x2£©£¾0
µ±x1+x2£¾0ʱ£¬
+t£¼1+t¡Ü0£¬¼´f£¨x1£©-f£¨x2£©£¾0
ËùÒÔy=f£¨x£©Êǵ¥µ÷µÝ¼õº¯Êý£»
£¨2£©ÓÉÌâÒâµÃ
£¬½âµÃ
£¬
¡àf(x)=
+
x=
(
+x)+
(
-x)¡Ý2
=
µ±ÇÒ½öµ±
(
+x)=
(
-x)£¬¼´x=-
ʱ£¬f(x)min=
£»
£¨3£©ÓÉÌâÒâÉèg£¨x£©=a£¨x-m£©2+n£¬£¨a£¾0£¬n£¾0£©£¬h£¨x£©=tx+b £¨t¡Ù0£©£¬
ËùÒÔF(x)=
+tx+b£®
ÈôÓÃx´ú»»x-m£¬ÓÃ
t´ú»»t£¬ÔòF£¨x£©×ÜÄÜ»¯³ÉF(x)=
(
+tx+q)£¨r£¾0£©µÄÐÎʽ£®
ÓÉÓÚ
¼°q¾ùÊdz£Êý£¬Òò¶ø£¬Ö»ÐèÑо¿F(x)=
+tx£¨r£¾0£©µÄ×îÖµ£®
µ±|t|¡Ý1ʱ£¬F£¨x£©Êǵ¥µ÷º¯Êý£¬ÎÞ×îÖµ£®
µ±|t|£¼1ʱ£¬
F(x)=
+tx=
(
+x)+
(
-x)¡Ý
¼´F(x)min=r
£¬´Ëʱx=-
£®
x12+4 |
x22+4 |
»¯³Éf(x1)-f(x2)=(x1-x2)(
x1+x2 | ||||
|
ÏÔÈ»£¬µ±x1+x2¡Ü0ʱ£¬f£¨x1£©-f£¨x2£©£¾0
µ±x1+x2£¾0ʱ£¬
x1+x2 | ||||
|
ËùÒÔy=f£¨x£©Êǵ¥µ÷µÝ¼õº¯Êý£»
£¨2£©ÓÉÌâÒâµÃ
|
|
¡àf(x)=
x2+4 |
1 |
2 |
3 |
4 |
x2+4 |
1 |
4 |
x2+4 |
|
3 |
µ±ÇÒ½öµ±
3 |
4 |
x2+4 |
1 |
4 |
x2+4 |
2
| ||
3 |
3 |
£¨3£©ÓÉÌâÒâÉèg£¨x£©=a£¨x-m£©2+n£¬£¨a£¾0£¬n£¾0£©£¬h£¨x£©=tx+b £¨t¡Ù0£©£¬
ËùÒÔF(x)=
a(x-m)2+n |
ÈôÓÃx´ú»»x-m£¬ÓÃ
a |
a |
x2+r2 |
ÓÉÓÚ
a |
x2+r2 |
µ±|t|¡Ý1ʱ£¬F£¨x£©Êǵ¥µ÷º¯Êý£¬ÎÞ×îÖµ£®
µ±|t|£¼1ʱ£¬
F(x)=
x2+r2 |
1+t |
2 |
x2+r2 |
1-t |
2 |
x2+r2 |
(1-t2)(x2+r2-x2) |
¼´F(x)min=r
1-t2 |
rt | ||
|
µãÆÀ£º±¾Ì⿼²éÁ˺¯Êýµ¥µ÷ÐÔµÄÅжÏÓëÖ¤Ã÷£¬ÑµÁ·ÁËÀûÓûù±¾²»µÈʽÇóº¯ÊýµÄ×îÖµ£¬¿¼²éÁËѧÉúÁé»î´¦ÀíºÍ½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²éÁËÊýѧת»¯Ë¼Ïë·½·¨£¬ÊÇÓÐÒ»¶¨ÄѶÈÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿