题目内容

(2006•宝山区二模)若P是圆x2+y2-4x+2y+1=0上的动点,则P到直线4x-3y+24=0的最小距离是
5
5
分析:把圆的方程化为标准方程,找出圆心坐标和圆的半径r,再利用点到直线的距离公式求出圆心到已知直线的距离d,d-r即为动点P到直线的最小距离,求出即可.
解答:解:把圆的方程化为标准方程得:(x-2)2+(y+1)2=4,
可得圆心坐标为(2,-1),半径r=2,
∴圆心到直线4x-3y+24=0的距离d=
|8+3+24|
42+(-3)2
=7,
∴d-r=7-2=5,
则P到直线4x-3y+24=0的最小距离5.
故答案为:5
点评:此题考查了直线与圆的位置关系,涉及的知识有圆的标准方程,点到直线的距离公式,其中根据题意找出动点P到已知直线的最小距离为d-r是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网