题目内容

点P在椭圆
x2
a2
+
y2
4
=1
(a>2)上,F1,F2是焦点,且
F1P
F2P
=0,则△F1PF2的面积是(  )
A.8-4
3
B.4+2
3
C.4D.8
2
根据椭圆的定义,得|PF1|+|PF2|=2a
F1P
F2P
=0,可得∠F1PF2=90°
∴|F1F2|2=|PF1|2+|PF2|2,即4(a2-4)=(|PF1|+|PF2|)2-2|PF1|•|PF2|
化简得4a2-16=4a2-2|PF1|•|PF2|,可得|PF1|•|PF2|=8
因此,Rt△F1PF2的面积S=
1
2
|PF1|•|PF2|=4
故选:C
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网