题目内容

已知二次函数f(x)=x2-mx+m(x∈R)同时满足:(1)不等式f(x)≤0的解集有且只有一个元素;(2)在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n),bn=1-
8-man
,我们把所有满足bi•bi+1<0的正整数i的个数叫做数列{bn}的异号数.根据以上信息,给出下列五个命题:
①m=0;
②m=4;
③数列{an}的通项公式为an=2n-5;
④数列{bn}的异号数为2;
⑤数列{bn}的异号数为3.
其中正确命题的序号为
②⑤
②⑤
.(写出所有正确命题的序号)
分析:不等式f(x)≤0的解集有且只有一个元素得出△=(-m)2-4m=0 解得m=0或m=4.结合在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立,排除m=0.利用数列中an与 Sn关系求出an,判断出③的正误.继而根据an,求出bn,通过解不等式bi•bi+1<0得出i的取值.
解答:解:若不等式f(x)≤0的解集有且只有一个元素,
根据二次函数的性质,应有△=(-m)2-4m=0 解得m=0或m=4.
当m=0时,f(x)=x2在(0,+∞)上是增函数,不满足(2),故①错误
当m=4时,f(x)=x2-4x+4=(x-2)2,取0<x1=1<x2=2,
使得不等式f(x1)>f(x2),故m=4,故②正确.
由上Sn=f(n)=(n-2)2,当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=(n-2)2-(n-3)2=2n-5.
∴an=
1,n=1
2n-5,n≥2
.故③错误
当n=1时,b1=1-4=-3<0,
而b2=1-
4
a2
=5>0,b1b2<0,所以i可以为1.
n≥2时,bn•bn+1=(1-
4
2n-5
)(1-
4
2n-3
)=
(2n-9)(2n-7)
(2n-5)(2n-3)
<0.
解得n=2,4.即i=2、4
即数列{bn}的异号数为3.故④错误,⑤正确
故答案为:②⑤
点评:本题考查二次函数图象和性质,数列通项公式求解,解不等式.考查阅读理解、计算等能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网