题目内容

【题目】选修4-1:几何证明选讲

如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF·EC

1求证:P=EDF;

2求证:CE·EB=EF·EP.

【答案】证明见解析.

【解析】1要证明两角PEDF相等,注意到,因此只要证C,EDF相等,这两个角正好是可证相似的两个三角形的对应角,这个相似由已知DE2=EF·EC可证;2要证明线段乘积相等,在已知圆中由相交弦定理有CE·EB=ED·EA,再看ED·EA与EF·EP的相等可由相似三角形得到.

试题分析:

试题解析:证明1∵DE2=EF·EC,

∴DE CE=EF ED.

DEF是公共角,

∴ΔDEF∽ΔCED. EDF=C.

∵CD∥AP, C= P.

P=EDF.----5分

2P=EDF, DEF=PEA,

∴ΔDEF∽ΔPEA.∴DE PE=EF EA.即EF·EP=DE·EA.

∵弦AD、BC相交于点E,∴DE·EA=CE·EB.∴CE·EB=EF·EP. 10分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网